LAWN MANOR

ACADEMY

Computer Science GCSE

Year 10 Year 11
. Introduction to computer science and computational thinking . Mastery of programming fundamentals: sequence, selection, iteration, subroutines, arrays, file
ol | Understanding algorithms: flowcharts, pseudocode, and basic programming in Python handling
o | |e Core programming concepts: variables, data types, input/output, sequencing, selection e Data representation: character sets (ASClI, Unicode), images, sound, compression
2 | | e Computer systems: CPU architecture, fetch-execute cycle, factors affecting performance, * Systems software: operating systems, utility software, simulation in code
8 embedded systems . Impacts of digital technology: ethical, legal, cultural, environmental, legislation
~ |e Data representation: binary, denary, hexadecimal, file handling . Robust programming: defensive design, input validation, error handling, testing, secure login sys
g . Memory and storage: RAM, ROM, primary vs secondary storage, compression methods tems
© | |* Algorithms: searching (linear, binary), sorting (bubble, merge), efficiency and complexity * System security: threats, prevention, encryption, authentication, scenario analysis
=1 Networking basics: LAN/WAN, network topologies, hardware, protocols, security . Translators and programming languages: compilers, interpreters, assemblers, high vs low level
.|| Z| |* Robustprogramming: defensive design, input validation, error handling, testing e IDE features and debugging strategies
2 £ . System security: threats, prevention, encryption, authentication . Project work: requirements, planning, development, testing, evaluation, presentation
5] 8 . Boolean logic: AND, OR, NOT gates, truth tables, logic circuits . Revision and exam preparation: theory and programming practice, mock exams, targeted revision,
o = e Advanced programming: functions, file and string manipulation, arrays/lists exam skills workshops, final programming challenge and celebration
o E . Mini project: design, code, test, and present a simple game or application
o
= 3 B
w E Abstraction, Decomposition, Algorithm, Flowchart, Pseudocode, IDE, Variable, Data Casting, Procedure, Subroutine, Gllobal variable, Local variable, Authe.ntication, Encryption,
all 1. Types, Input, Output, Sequence, Selection, If/Else, CPU, Von Neumann, Fetch-Execute Qser access I.evels, Sample r.ate, Bit depth, Metadata,. !_ossy compression, Iossless.compres-
. % Z | [Cycle, Clock Speed, Cache, Cores, Embedded systems, RAM, ROM, Primary Storage, sion, Operatlng_system, Perlpheral management, Utility software, Defragmentation, B_ackup,
Z || 3| | Secondary Storage, Hexadecimal, ASCII, File handling, Array, List, Linear search, Binary Environmental impact, Ethical, Legal, Cultural, Data Protection Act (DPA), Computer Misuse
Wil 2 search, Bubble sort, Merge sort, Trace table, Efficiency, Lan, Wan, Star Topology, Mesh Act (CMA) Copyright, Open source, Proprietary, High-level language, Low level programming
o 5 S | | topology, Protocol, TCP/IP, HTTP, FTP, NIC, Switch, Router, Peer-to-peer, Client server, language, Compiler, Assembler, Interpreter, Translators, Debugger, IDE features, Break-
Wi - Firewall, Malware, Phishing, Social engineering, Validation, Boundary, Erroneous, Bool- points, Project evaluation, Test plan, Automation, Audit log, Reflection.
ofld ean, Logic gate, Scope, String manipulation, Project, Planning, Game loop.
w
2 é I
- §' Direct technical and cognitive abilities developed throughout the course:
% 9 Computational thinking: abstraction, decomposition, pattern recognition, algorithm design. Programming (Python): sequence, selection, iteration, functions, variables, data types, arrays/lists.
g Problem solving: designing, testing, debugging, optimizing algorithms and programs. Use of Integrated Development Environments (IDEs) and software tools. Data representation
] (binary, hexadecimal, ASCIl/Unicode, images, sound). Understanding computer systems: hardware, memory, storage, networks, system architecture. Applying defensive design, validation,
error handling, and software testing. Interpreting and using flowcharts, pseudocode, and trace tables. Networking fundamentals: LAN/WAN, protocols, hardware Awareness of system
security: types of threats, encryption, authentication. Evaluating the impact of digital technology: ethical, legal, cultural, environmental
End-of-unit/topic tests: At the end of each major topic or unit, students complete written or practical assessments to check understanding of key concepts (e.g., systems architecture, programming fundamentals,
E networking, algorithms).
uEJ Mock exams: Typically held at the end of Year 10 and during Year 11 to simulate the final exam experience and identify areas for improvement. Educake/online quizzes: Used at intervals (often at the end of
a terms or topics) for retrieval practice, instant feedback, and consolidation. Project assessments: Mini programming projects, especially in Year 10 (e.g., game or quiz development), are assessed on planning,
w | | coding, testing, and evaluation. Practical programming tasks: Throughout both years, students are assessed on their ability to design, write, test, and debug code in Python or pseudocode.
2 Feedback and Improvement: Peer and self-assessment: Students regularly review each other’s work and reflect on their own progress, especially after projects and practical tasks.
Targeted improvement tasks: After formal assessments, students act on feedback to address gaps in knowledge or skills.
ATTITUDE Students-work in pairs and.grou.ps on programming tas.ks, projects, and peer reviews, promoting R E S ILI1 EN c E Builds resilience through problem—solving and |eaming from mistakes
cooperation, respect, and listening to others’ perspectives. . .
Encourages teamwork, leadership, and independence

U nderSta nding OtherS, Group discussions, debates (e.g., on ethical and legal impacts of technology), and project presentations
behaviour and att'itudes, foster communication skills and appreciation of diverse viewpoints. DeVelOpment, We“be|ng Celebrates achievements and promotes self-improvement

Peer and self-assessment activities encourage reflection, empathy, and valuing feedback from class- o i
mates. Fosters responsibility and ethical awareness

CharaCter' personal Supports digital wellbeing and online safety

The curriculum includes activities where students present, critique, and celebrate each other’s work,

SMSC, PHSE helping to build trust and mutual respect. and CIAG Raises awareness of computing careers and transferable skills

