Separate Science (Chemistry)

Unit 2 Bonding structure and properties of matter

Foundation

Question number	Description	Marks	Page number
4.2.1 Che	mical bonds, ionic covalent and metallic		
1	Identifying bonding type from diagrams multiple choice, (4.4.3 electrolysis gap fills, and statement/reason box matching)	10	3
5	State symbol for oxygen at room temperature, percentage by mass from a pie chart, calculating a mean from a results table to 3 significant figures, completing dot and cross diagram for H ₂ O, bonding gap fill, (4.2.2 comparing boiling points of molecule gap fill using relative sizes from a diagram)	10	9
4.2.2 How	bonding and structure are related to the properties of substance	es	
2	Ratio of metal atoms in an alloy diagram, multiple choice based on calculated ratio, electron structure of silicon multiple choice, identifying bonding in silicon dioxide from diagram, identifying number of atoms bonding in diagram, state symbol for silicon dioxide at room temperature.	8	13
4	Reading values from a graph, completing bar graph for metals in an alloy, ratio calculation of metals in alloy based on values read from graph, defining alloy, reason why alloys are used rather than pure metals, metallic metals multiple choice.		17

Common content

Question	Description	Marks	Page
number			number
4.2.1 Chei	mical bonds, ionic covalent and metallic		
			
2	(4.2.1 comparing electronic structure of sodium an chlorine,	8	19
	positions in periodic table are given), describing electron transfer		
	when sodium and chlorine react (4.5.1 completing reaction		
	profile for exothermic reaction)		

4.2.3	Structure and bonding of carbon		
9	Converting metres in standard form to nanometres, use of graphene multiple choice, suggest reason graphene more suitable than graphite for electronics, explain why graphite conducts electricity and is slippery (6 marks)	9	21
4.2.4	Bulk and surface properties of matter including nanoparticles		

<u>Higher</u>

Question number	Description	Marks	Page number
4.2.1 Che	mical bonds, ionic covalent and metallic	1	
7	Recall value of Avogadro constant, ratio calculation the mass of copper in g in 1kg of a sample when told 70ng of copper in 1g of sample answer in standard form, empirical formula of silicon dioxide from diagram, describe the structure and bonding in silicon dioxide	11	27
4.2.2 How	bonding and structure are related to the properties of substance	es	
5	Explain conditions need for sodium chloride needed to conduct electricity, describe how sodium conducts thermal energy (question continued in 4.2.3)	6	29
4.2.3 Stru	cture and bonding of carbon		
5	(Question continued form 4.2.3) explain why diamond has a high meting point	3	31

0 1	This question is about structure and bonding.
0 1.1	Figure 1 shows part of the structure of calcium oxide (CaO).
	Figure 1
	2- 2+ 2- 2+ 2- 2+ 2- 2+ 2-
	What type of bonding is present in calcium oxide? [1 mark]
	Tick one box.
	Covalent
	lonic
	Macromolecular
	Metallic

0 1.2	Figure 2 shows a particle of methane (CH ₄).	
	Figure 2	
	H 	
	H— Ċ— H	
	Ĥ	
	What type of particle is present in Figure 2 ? [1 mark]	
	Tick one box.	
	An ion	
	A lattice	
	A molecule	
	A polymer	
0 1.3	Figure 3 shows the structure of C ₆₀	
	Figure 3	
	Complete the sentence.	
	Choose the answer from the box. [1 mark]	
	[·········	
	diatomic giant ionic a fullerene giant metallic	
	The structure of C_{60} is	TELEVISION OF THE STREET,

An electric current is passed through copper.

Figure 5 shows the apparatus used.

Figure 5

0 1 . 6 Complete the sentence.

Choose the answer from the box.

[1 mark]

gas liquid solid solution

Figure 5 shows that copper conducts electricity as a

0 1.7 Complete the sentence.

Choose the answer from the box.

[1 mark]

atoms electrons ions molecules

Copper conducts electricity because of the movement of delocalised _____

0 1.8 Figure 6 shows the apparatus used to investigate the effect of electricity on sodium chloride solution.

Figure 6

Complete the sentence.

Choose the answer from the box.

[1 mark]

dissolved gaseous molten

Figure 6 shows that sodium chloride conducts electricity when

0 1 . 9

Sodium chloride is made up of ions.

Figure 7 shows the apparatus used to investigate the effect of electricity on solid sodium chloride and molten sodium chloride.

Figure 7

Table 1 shows the results.

Table 1

	Solid sodium chloride	Molten sodium chloride	
Observation	The filament bulb does not light up	The filament bulb lights up	
Deduction	Does not conduct electricity	Does conduct electricity	

Draw one line from each statement to the correct reason.

Statement

The ions are fixed.

Solid sodium chloride does not conduct electricity.

The ions are mobile.

Reason

Molten sodium chloride conducts electricity.

The ions are neutral.

The ions are vibrating.

Turn over ▶

[2 marks]

IB/M/Jun18/8464/C/1F

10

This question is about oxygen and compounds of oxygen.
What is the state symbol of oxygen at room temperature? [1 mark]
Figure 4 shows the percentage by mass of the elements calcium, carbon and oxygen in calcium carbonate. Figure 4
What is the percentage by mass of calcium in calcium carbonate? [1 mark]
Percentage =%

0 5.3	At high temperature, sodium nitrate decomposes into sodium nitrite and oxygen.
	A student heats three samples of sodium nitrate.
	The mass of each sample was 4.50 g
	The mass of solid after heating was recorded.
	Table 2 shows the mass of solid after heating in each experiment.

Table 2

Experiment	Mass of solid after heating in g
1	3.76
2	3.98
3	4.09

Calculate the mean mass of solid after heating.

Give your answer to 3 significant figures.		[3 marks]
		[5 marks]
	Mean mass of solid after heating =	g

Question 5 continues on the next page

0 5 . 4

Table 3 shows the electronic structure of hydrogen and oxygen.

Table 3

Element	Electronic structure
Hydrogen	1
Oxygen	2,6

Figure 5 shows part of a dot and cross diagram of a molecule of water (H₂O).

Complete the dot and cross diagram.

You should show only the electrons in the outer energy levels.

[2 marks]

Figure 5

Oxygen and sulfur are examples of simple molecules.

0 5 . 5 Complete the sentence.

Choose the answer from the box.

covalent

[1 mark]

metallic

There a	re	_ bonds between the atoms of oxygen i	n an
oxygen	molecule.		

ionic

0 5 . 6 Figure 6 shows the relative sizes of an oxygen molecule and a sulfur molecule. Figure 6 Oxygen molecule Sulfur molecule How does the boiling point of sulfur compare with the boiling point of oxygen? Complete the sentences. [2 marks] The boiling point of sulfur is ______ the boiling point of oxygen. This is because in sulfur the intermolecular forces are

10

than the intermolecular forces in oxygen.

0 2 A 1 kilogram mass is made from a mixture of metal A and metal B. Figure 3 represents part of the structure of the 1 kilogram mass. Figure 3 Metal A What is the ratio of metal A atoms to metal B atoms in Figure 3? [1 mark] Ratio of **A**:**B** atoms = : What is a mixture of metals called? [1 mark] Tick (✓) one box. A polymer A salt An alkene An alloy

Do not write outside the

box

0 2.3	A silicon sphere has a mass of 1 kilogram.	Annual School or district and particular for the latest decreased the la
	The largest impurity in the silicon sphere is copper.	The Contract of the Contract o
	There are 7×10^{-5} g of copper in the silicon sphere.	Owner of section that have not considered the section of
	What is the mass of copper in kilograms in the silicon sphere? [1 mark] Tick (✓) one box.	AVVIDADANT CITE AND CONTRACTOR AND AND CONTRACTOR OF BANKET AND CONTRACTOR AND CO
	$7 \times 10^{-2} \text{ kg}$	
	$7 \times 10^{-4} \text{ kg}$	AND THE PROPERTY OF THE PARTY O
	7 × 10 ⁻⁶ kg	THE REPORT OF THE PERSON OF TH
	7 ×10 ⁻⁸ kg	ALE COLOURS AND PROPERTY OF STREET
0 2.4	An atom of silicon has 14 electrons. What is the electronic structure of silicon? Tick (✓) one box. 2,4,8 2,8,4 4,2,8	
	8,4,2	mandal annual Child Add Add Add Add Add Add Add Add Add A
	Question 2 continues on the next page	

Turn over ▶

Do not write outside the box

Silicon dioxide is a compound of silicon and oxygen. Figure 4 represents part of the giant structure of silicon dioxide. Figure 4 Key Oxygen atom Silicon atom 0 2 . Which two words describe the bonding in silicon dioxide? 5 [2 marks] Tick (✓) two boxes. Covalent Intermolecular Ionic Metallic Strong

0 2.6	How many silicon atoms are bonded to each oxygen atom in silicon dioxide? Use Figure 4 . Tick (✓) one box.	[1 mark]	Do not write outside the box
	1 2 3 4		
0 2.7	Which symbol represents the state of silicon dioxide at room temperature? Tick (\checkmark) one box.	[1 mark]	
	(aq) (g)		
	(l) (s)		8
	Turn over for the next question		

0 4 One alloy contains iron, chromium and nickel.

Figure 2 shows the mass of iron and the mass of nickel in 80 g of this alloy.

Figure 2

0 4. 1 Determine the mass of iron and nickel in 80 g of the alloy

Use Figure 2.

[1 mark]

Mass of iron = _____ g

Mass of nickel = _____ g

0 4 . 2 Calculate the mass of chromium in 80 g of the allo	iss of chromium in 80 g of the alloy.
--	---------------------------------------

Draw a bar on Figure 2 to show the mass of chromium in 80 g of the alloy.

[2 marks]

Mass of chromium = g

0 4.3	What mass of iron is present in 0.80 kg of the alloy? Give your answer in grams.	Do not w. outside to box [1 mark]	the
	Mass of iron =	g	
0 4.4	What is an alloy?	[1 mark]	
0 4.5	Give one reason why alloys are used instead of pure metals.	[1 mark]	
0 4.6	Iron and nickel are both magnetic metals. Which is also a magnetic metal? Tick one box.	1 mark]	
	Cobalt Copper Sodium Zinc	7	entrance of the second of the

0 2	This question is about sodium and chlorine.	
	Figure 2 shows the positions of sodium and chlorine in the periodic table.	
	Figure 2	
	Na CI	
0 2.1	State one difference and one similarity in the electronic structure of sodium and of chlorine.	arks]
	Difference	
	Similarity	
0 2.2	Sodium atoms react with chlorine atoms to produce sodium chloride (NaCl). Describe what happens when a sodium atom reacts with a chlorine atom.	
	Write about electron transfer in your answer.	arks]

t write le the

0 2.3	The reaction between soc	dium and chlorine is an exothermic reaction.	Do not outside bo.
	Complete the reaction pro	ofile for the reaction between sodium and chlorine. [2 ma	ırks]
		Figure 3	-
	Relative energy	Reactants	
		Progress of reaction	
		r Togress of Teacher	
			8
			Harantii in marantii in marant
			AND ADDRESS OF THE PARTY OF THE

40 Do not write outside the box This question is about graphene and graphite. Graphene is a single layer of graphite. Figure 11 represents part of the structure of graphene. Figure 11 Graphene is one atom thick. The diameter of the atom is 3.4×10^{-10} m What is the thickness of a graphene layer in nanometres? $1 \text{ nm} = 10^{-9} \text{ m}$ [1 mark] Tick (✓) one box.

0 9

0 9 .

1

0.034 nm

0.34 nm

3.4 nm

34 nm

0 9.2	Which is one use of graphene? [1 mark]	Do not write outside the box
	Tick (✓) one box.	
	As a detergent	
	As a solvent	
	In composites	
	To produce polymers	
0 9 . 3	Graphene and graphite are used in electronics.	
	Suggest one reason why graphene is a more suitable material for use in electronics than graphite.	
	[1 mark]	
	Question 9 continues on the next page	
	Question o continues on the next page	

0 9.4	Figure 12 represents part of the structure of graphite.	Do not write outside the box
	Figure 12	
	Graphite is used as a contact in electric motors because graphite:	
	conducts electricityis slippery.	
	Explain why graphite has these properties.	
	You should refer to the structure and bonding of graphite in your answer. [6 marks]	
		9

END OF QUESTIONS

IB/G/Jun19/8465/3F

- This question is about materials and their properties.
- 0 3 . 1 Figure 3 shows a carbon nanotube.

Figure 3

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.

[2 marks]		[2	m	а	r	ks	;
-----------	--	----	---	---	---	----	---

0 3 . 2 Figure 4 shows a badminton racket.

Figure 4

Table 1 shows some properties of materials.

The materials could be used to make badminton racket frames.

Table 1

Material	Density in g/cm ³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

[4 marks]	Use Table 1 .	E4 was wheel
		[4 marks]

	10	
0 3.3	Zinc oxide can be produced as nanoparticles and as fine particles. A nanoparticle of zinc oxide is a cube of side 82 nm Figure 5 represents a nanoparticle of zinc oxide.	
	Figure 5	
	82 nm	дення в применення
	Calculate the surface area of a nanoparticle of zinc oxide.	
	Give your answer in standard form. [3 marks]	
	Surface area = nm²	
0 3 . 4	Some suncreams contain zinc oxide as nanoparticles or as fine particles.	
	Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams.	Topico and the second property of the second

[1 mark]

10

	The Avogadro constant is the number of atoms in 1 mole of a substance.	
0 7.3	What is the value of the Avogadro constant? Tick (✓) one box.	[1 mark]
	$6.02 \times 10^{23} \text{ per mole}$ $6.02 \times 10^{24} \text{ per mole}$ $6.02 \times 10^{25} \text{ per mole}$ $6.02 \times 10^{26} \text{ per mole}$	
0 7 . 4	Scientists could use a sample of silicon to define the Avogadro constant.	TO THE PARTY OF TH
	Copper is an impurity in the silicon sample.	
	There are 70 nanograms of copper in 1 g of the sample.	
	Calculate the mass of copper in grams in 1 kg of the sample.	
	Give your answer in standard form.	
	1 nanogram = 10^{-9} g	[2 marks]
	Mass of copper =	g

Silicon mainly occurs in the Earth's crust as silicon dioxide.

Figure 8 represents part of the structure of silicon dioxide.

Figure 8

0 7.5	Determine the empirical formula of silicon dioxide. Use Figure 8. [1 mark]
	Empirical formula =
0 7.6	Describe the structure and bonding in silicon dioxide. [3 marks]

Turn over ▶

11

0 5 . 2 Figure 6 shows part of the structure and bonding in sodium chloride (NaCl).

Figure 6

ain the conditions needed for sodium chloride to conduct electricity.	[3 marks]
	•

Question 5 continues on the next page

0 5.3	Figure 7 shows the structure of sodium.	Do . out
	Figure 7	
	Describe how sodium conducts thermal energy. [3 marks]	
		6
		<u> </u>

0 5	This question is about structure and bonding.
0 5 . 1	Figure 5 shows part of the structure and bonding in diamond.
	Figure 5
	Explain why diamond has a high melting point. [3 marks]

