Separate Science (Chemistry) Unit 3 Quantitative chemistry

Foundation

Question number	Description	Marks	Page number
1	mical measurements, conservation of mass and the quantitative equations	interpre	tation of
Cileinicar	equations		
4	(Mixed multiple choice questions), reading value from a graph, extrapolation of graph calculation, describing mistakes in a gradient calculation example and doing the correct calculation, Calculating Ar of an unknown element in a compound and then using periodic table to name element	16	2
4.3.3 Yield	and atom economy of chemical reactions		
6	Calculating atom economy, calculating 38% of 40kg, calculating Mr of a compound, calculating percentage yield, (4.4.3 explain why aluminium is extracted from aluminium oxide by electrolysis rather than reduction)	11	7

Do not write outside the box

0 4	This question is about the elements in Group 2 of the periodic table.	
0 4.1	Figure 9 shows the positions of four elements, A, B, C, and D, in the period	ic table.
	Figure 9	
	В	D
	A C	
	Which element is in Group 2?	[1 mark]
	Tick one box.	[
	A B C D	
	Question 4 continues on the next page	

Do not write outside the box

	Group 2 metal carbon gas.	nates break down when heated to produce a metal oxid	de and a
		metal carbonate → metal oxide + gas	
0 4.2	Name the two produc	ets when calcium carbonate (CaCO ₃) is heated.	[2 marks]
0 4.3	What type of reaction Tick one box.	happens when a compound breaks down?	[1 mark]
	burning		
	decomposition		
	neutralisation		
	reduction		
0 4.4	The metal carbonate	takes in energy from the surroundings to break down.	
	What type of reaction	takes in energy from the surroundings?	[1 mark]
	Tick one box.		[1 mark]
	combustion		
	electrolysis		
	endothermic		
	exothermic		

Do not write outside the box

0 4 . 7

A student heated different masses of a Group 2 carbonate. The student measured the volume of gas produced.

Figure 11 shows a graph of the student's results.

The student calculates the gradient of the line in Figure 11

The student makes two mistakes.

Figure 11

 $\label{eq:Correct formula for gradient} \text{Correct formula for gradient} = \frac{\text{Increase in volume of gas}}{\text{Increase in mass of Group 2 metal carbonate heated}}$

Student's calculation = $\frac{4}{750}$ = 0.00533 cm³ per g

Identify the two mistakes the student makes.

Calculate the correct gradient of the line.

[4	m	ar	ks
----	---	----	----

Mistake 1	•		
Mistake 2			
Calculation			

0 4.8	A student repeated the experiment with a different Group 2 metal carbonate (XCO ₃).	Do not write outside the box
	The relative formula mass (M_r) of XCO ₃ is 84	
	Relative atomic masses (A_r) : $C = 12$ $O = 16$	
	Calculate the relative atomic mass (A_r) of X .	
	Name metal X .	
	Use the periodic table. [4 marks]	
	Relative atomic mass (A _r) =	
	Metal X is	

16

Turn over for the next question

1 7

Turn over ▶

This question is about the extraction of metals.

Tungsten is a metal.

The symbol of tungsten is W

Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is: $WO_3 + 3H_2 \rightarrow W + 3H_2O$ Calculate the percentage atom economy when tungsten is produced in this reaction.

Use the equation: $percentage atom economy = \frac{184}{(M_r WO_3) + (3 \times M_r H_2)} \times 100$ Relative formula masses (M_r) : $WO_3 = 232 \quad H_2 = 2$ [2 marks]

Percentage atom economy = ______ %

	Aluminium is extracted from aluminium oxide.	
0 6.2	38% of a rock sample is aluminium oxide.	
	Calculate the mass of aluminium oxide in 40 kg of the rock sample.	[2 marks]
	Mass of aluminium oxide =	
0 6.3	The formula of aluminium oxide is Al ₂ O ₃	
	Calculate the relative formula mass (M_r) of aluminium oxide.	
	Relative atomic masses (A_r) : O = 16 Al = 27	[2 marks]
		,
		THE PARTITION OF THE PA
		THE PROPERTY OF THE PROPERTY O
	Relative formula mass (<i>M</i> _r) =	
	Question 6 continues on the next page	

Turn over ▶

	Do not write outside the box
ks]	
	·
%	
ks]	

0 6 . 4	60.0 kg of aluminium oxide produces a maximum of 31.8 kg of aluminium.
	In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.
	Calculate the percentage yield.
	Give your answer to 3 significant figures.
	Use the equation:
	percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$ [3 marks]
	Percentage yield = %
0 6 . 5	Extracting metals by electrolysis is a very expensive process.
	Explain why aluminium is extracted using electrolysis and not by reduction with carbon.
	[2 marks]

